
Common DP Problems

1 Knapsack Problem

1.1 Problem
Given n items, labeled item 0 . . . n − 1. Let vj denote the value of item j and wj denote the weight
of item j. Suppose we have a bag that can hold up to weight W . Which items should we put into the
bag to maximize the sum of the values of the items in the bag?

1.2 Solution
In this fairly standard DP problem, the state and recurrence relation is not hard to see. We can describe
the state by the tuple (item we are currently considering, how much more weight can the bag hold).
The recurrence relation essentially deciding whether to put the item we are currently considering into
the bag or not:

f(i, w) = min{f(i + 1, w), f(i + 1, w − wi)}

2 Subset Sum

2.1 Problem
Given a set S = {x1, . . . , xn} of positive integers, does there exists a subset T ⊂ S such that the sum
of all integers in T is t?

2.2 Solution
We will construct an iterative DP solution. Let memo[i][s] denote whether we can find a subset of
{x1, . . . , xi} whose sum is equal to s. The base case is: memo[0][0] = true and for 1 ≤ i ≤ n,
memo[0][i] = false. The recurrence relation is then

memo[i][s] = memo[i-1][s] || memo[i-1][s - xn]
Now note that the first dimension of the memo[][] is actually redundant, since memo[i][*]

only depends on memo[i-1][*]. Recall from the last lecture that this means we can reduce one of
the dimension to yield the following code:

bool s u b s e t s u m ( i n t t ) {
i n t memo[ t + 1 ] ;

/ / i n i t i a l i z e t o t h e base case
memset (memo , f a l s e , s i z e o f (memo ) ) ;
memo [ 0 ] = t rue ;

/ / i t e r a t i v e dp
f o r ( i n t i = 1 ; i <= n ; ++ i ) {

f o r ( i n t j = t ; j >= x [ i ] ; −− j ) {



memo[ j ] |= memo[ j − x [ i ] ] ;
}

}

re turn memo[ t ] ;
}

2.3 Final Remarks
In the above code, we exploited the knowledge that S only contains positive integer, so the memo
array only need the range [0 . . . t]. The more general version of the subset sum does not limit S
contain only positive integers. In this case, the range of the memo array must encompass the range
[N . . . P ] where N is the sum of all negative integers in S and P is the sum of all positive integers
in S. Of course, in actual implementation, we must shift this since we can’t use negative number to
index into an array (alternatively, you can use a map, which is slower).

Also, note that in the above code, we actually know whether there exists a subset whose sum is
any number in the range [0 . . . t]. So if S is not changed in the problem and only t is varied, we can
actually pre-calculate the memo array first. This way, we can return the answer in constant time per
query.

3 Longest Increasing Subsequence

3.1 Problem
Given a sequence of integers x1, x2, . . . , xn, what is the length of the longest (strictly) increasing
subsequence? A sequence is increasing if ∀i < j, xi < xj .

3.2 Naive Solution
Let f(i) denote the longest increasing subsequence of the sequence x1, x2, . . . , xi ending with xi.
Then the recurrence relation is specified by max

j
{1 + f(j)}, where j is iterated over all 1 ≤ j < i

and xj ≤ xi. This has the runtime of O(n2).

3.3 A Smarter Solution
We construct an iterative solution. We iterate through the sequence and for each element xi, we
keep track of an array memo[k] which denotes the index j ≤ i such that there exists an increasing
subsequence of length k ending with the integer xj . If there are multiple such indices, we will choose
the index such that xj is the smallest. If there is still a tie, then we choose the smaller j. Note that by
this construction, if k < l, then xmemo[k] < xmemo[l]. The base case is memo[1] = 0.

When we are considering xi+1, then the length of the longest increasing subsequence of ending in
xi+1 is l where xmemo[l−1] < xi+1 ≤ xmemo[l] (ie l is the largest index such that xmemo[l−1] < xi+1).
How do we find l efficiently? The answer is binary search! The algorithm is best illustrated by an
example. Suppose we are considering the sequence [2, 1, 3, 3, 5, 4].



i x[i] l memo[1] memo[2] memo[3] memo[4] memo[5] memo[6] L
1 1 1 1 ∞ ∞ ∞ ∞ ∞ 1
2 3 2 1 2 ∞ ∞ ∞ ∞ 2
3 3 3 1 2 ∞ ∞ ∞ ∞ 2
4 5 3 1 2 4 ∞ ∞ ∞ 3
5 4 3 1 2 5 ∞ ∞ ∞ 3

Here is the code for LIS:

/ / need t o d e f i n e a cus tom compara tor
bool mycmp ( c o n s t i n t& a , c o n s t i n t& b ) {

re turn x [ a ] < x [ b ] ;
}

i n t LIS ( ) {
i n t L = 1 ;
i n t memo [ 6 4 ] ; / / make s u r e t h e a r r a y i s l a r g e enough
memset (memo , 0 x3f , s i z e o f (memo ) ) ;
memo [ 1 ] = 0 ;

/ / n o t e t h a t t h e f i r s t e l e m e n t i s x [ 0 ]
f o r ( i = 1 ; i < n ; ++ i ) {

i n t l = uppe r bound (memo , memo + L + 1 , i , mycmp ) − memo ;
i f ( l > L && x [memo[ l −1]] < x [ i ] )

memo[ l ] = i , L = l ;
e l s e i f ( l <= L && ( l == 1 | | x [memo[ l −1 ] ] ) )

memo[ l ] = i ;
}
re turn L ;

}


